Improving Classifications for Cardiac Autonomic Neuropathy Using Multi-level Ensemble Classifiers and Feature Selection Based on Random Forest
نویسندگان
چکیده
This paper is devoted to empirical investigation of novel multi-level ensemble meta classifiers for the detection and monitoring of progression of cardiac autonomic neuropathy, CAN, in diabetes patients. Our experiments relied on an extensive database and concentrated on ensembles of ensembles, or multi-level meta classifiers, for the classification of cardiac autonomic neuropathy progression. First, we carried out a thorough investigation comparing the performance of various base classifiers for several known sets of the most essential features in this database and determined that Random Forest significantly and consistently outperforms all other base classifiers in this new application. Second, we used feature selection and ranking implemented in Random Forest. It was able to identify a new set of features, which has turned out better than all other sets considered for this large and well-known database previously. Random Forest remained the very best classifier for the new set of features too. Third, we investigated meta classifiers and new multi-level meta classifiers based on Random Forest, which have improved its performance. The results obtained show that novel multi-level meta classifiers achieved further improvement and obtained new outcomes that are significantly better compared with the outcomes published in the literature previously for cardiac autonomic neuropathy.
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملImprovement of Random Forest Classifier through Localization of Persian Handwritten OCR
The random forest (RF) classifier is an ensemble classifier derived from decision tree idea. However the parallel operations of several classifiers along with use of randomness in sample and feature selection has made the random forest a very strong classifier with accuracy rates comparable to most of currently used classifiers. Although, the use of random forest on handwritten digits has been ...
متن کامل